Chern Numbers and Oriented Homotopy Type

نویسنده

  • PETER J. KAHN
چکیده

1. Statement of results. This note announces the solution of the following problem, a more precise version of which appears in §2: (1) Determine the linear combinations of rational Chern numbers (of almost-complex manifolds) that are invariants of oriented homotopy type (of almost-complex manifolds). Milnor, who posed the problem, conjectured that every such homotopy invariant could be expressed as a rational linear combination of the Euler Characteristic and the Index.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Rational Homotopy of Four-manifolds

We give explicit formulas for the ranks of the third and fourth homotopy groups of all oriented closed simply connected four-manifolds in terms of their second Betti numbers. We also show that the rational homotopy type of these manifolds is classified by their rank and signature.

متن کامل

Chern numbers of smooth varieties via homotopy continuation and intersection theory

Homotopy continuation provides a numerical tool for computing the equivalence of a smooth variety in an intersection product. Intersection theory provides a theoretical tool for relating the equivalence of a smooth variety in an intersection product to the degrees of the Chern classes of the variety. A combination of these tools leads to a numerical method for computing the degrees of Chern cla...

متن کامل

Chern characters via connections up to homotopy ∗

1 Introduction: The aim of this note is to point out that Chern characters can be computed using curvatures of " connections up to homotopy " , and to present an application to the vanishing theorem for Lie algebroids. Classically, Chern characters are computed with the help of a connection and its curvature. However, one often has to relax the notion of connection so that one gains more freedo...

متن کامل

0 Chern characters via connections up to homotopy ∗

1 Introduction: The aim of this note is to point out that Chern characters can be computed using curvatures of " connections up to homotopy " , and to present an application to the vanishing theorem for Lie algebroids. Classically, Chern characters are computed with the help of a connection and its curvature. However, one often has to relax the notion of connection so that one gains more freedo...

متن کامل

Topologically Invariant Chern Numbers of Projective Varieties

We prove that a rational linear combination of Chern numbers is an oriented diffeomorphism invariant of smooth complex projective varieties if and only if it is a linear combination of the Euler and Pontryagin numbers. In dimension at least three we prove that only multiples of the top Chern number, which is the Euler characteristic, are invariant under diffeomorphisms that are not necessarily ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007